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Overview

* Refs.: chap. 4 of Acheson, chap, 10 of Cengel, Faber.

 For irrotational flow, V X V= 0, which implies that V=
+ V.

* ¢ is a scalar field called the potential flow function.

* If the fluid is incompressible, then the continuity equation
implies that V-V = 0.
* In this case the ﬁc?t’eﬁfm’ﬂo/wg%nc\;jgljggti(s{fiqs the Laplace

equation 147 Ll s
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* We can obtain many velocity fields using the techniques
used to solve Laplace’s equation.



Velocity field

Given the flow potential, the velocity field is obtained from its gradient:

Cartesian coordinates,
dh deh db
u — I_,l — “.l =
dx dy dz
and in cylindrical coordinates,
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Cartesian Coordinates (x, v, z)
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Cylindrical Coordinates (r, 6, z)
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Example (schematic)




Examples (solutions of Laplace’s equation)

Cylinder in free stream

Airfoil in free stream



Examples

R € Z J» Re=10000




Superconductor

T>Te T<Tc

https://en.wikipedia.org/wiki/Meissner_effect



Ex.:

u= ax,

v



Back to Laplace’s equation

For irrotational regions of flow:

In cartesian coordinates

In cylindrical coordinates

Vig = . =
rar\. ar re ag* a7

Spherical and mixed coordinates may also be useful.
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* The beauty of this is that we have combined three unknown velocity
components (e.g., u, v, and w) into one unknown scalar field ¢,
eliminating two of the equations required for a solution.

* Once we obtain a solution, we can calculate all three components of
the velocity field.

* The Laplace equation is well known since it shows up in several fields
of physics, applied mathematics, and engineering. Various solution
techniques, both analytical and numerical, are available in the
literature.

* Solutions of the Laplace equation are dominated by the geometry
(i.e., boundary conditions).

e The solution is valid for any incompressible fluid, regardless of its
density or its viscosity, in regions of the flow in which the irrotational
approximation is appropriate



Pressure

Of course we still need a dynamical equation to calculate the pressure field.
This will be given by the Euler equation.

If gravity is the only body force, then

—
., . . ; . - = =T — —=
For irrotational regions of flow: p[— + (V-V)¥ ‘ =—VP + pg

Steady, incompressible flow: — +

Since the flow is irrotational, we can apply Bernoulli to ANY two points in the
flow domain.
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Stream function

* For irrotational flows in 2D, the stream function obeys the Laplace
equation:
Vi = 0.

* In potential 2D flow, both the flow potential and the stream function
are solutions of the Laplace equation.

* Lines of constant flow potential are perpendicular to the streamlines
(check).

* In axisymmetric flows the stream function obeys a linear equation
but that is no longer Laplace’s equation.



Stream function

For incompressible 2D flows:

oY oy » au v

Uu=— v =— 0
ax ay

dy ’ ox

Important property: { is constant along a streamline.

v, ov_dyew_dway_.
DV ‘>L'L+ (- v)“’_” Yoy "oy ax axray O “7—}:@

Dt o Dt

Generic coordinate system (only in 2D) =7 1][ = (7 -

u=vanvk) (s oo



Complex potential

w=¢+iy = €

Pp Fy Fy

o2 T 6‘y2=0 ¥

= ()
x> 3y?
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Kelvin’s circulation theorem

* An ideal fluid that is vorticity free at a given instant is vorticity free at
all times. o

* Demonstration: see Faber 120-122

* In three dimensions the conservation of vorticity (which corresponds
to the conservation of angular momentum in mechanics) takes a
somewhat subtle form.

* The circulation of a velocity field is defined to be
K{t} = $u{x,t}-dl, ﬂ;@

where the line is a closed loop which moves with the fluid.



Circulation and vorticity

* By Stokes’ theorem

Kng ll*tﬂ:/ (Vb{u)*ndS:/
C(t) Sty T = S(t)

(4

where S(t) is a surface whose edges connect with C(t).
K is zero for all loops if () is zero in the domain!

Kelvin’s theorem asserts that

DK

0.
Dt

Q- ndS,
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Demonstration

The loop moves with the flow and thus

D]{ @/g _LJ:;, D(@(f)
w o 7

The second term is the relative velocity of two nearby
points on the loop and can be written as (du/al)dl.

DLO) 7. I
D4 v
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If the fluid is incompressible, using Euler:

Du
— = —V|{=+
o ofz )

Dj.mﬁ:,fV(lf& 4,5’3),@/7

(st
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Superposition

* Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution.

g - A 4.!— + 5 ¢L

* For example, if ¢, and ¢, are each solutions of the Laplace
equation, then 4 ¢, + B ¢, are also solutions, where A and B are

arbitrary constants. (/7 - AV2¢_:, + BQW

* By extension, you may combine several solutions of the Laplace
equation, and the combination is guaranteed to also be a solution.

) N 50&/{6» a[l (h{) =0 S Ualla).

- ar i (il

&
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Uniform (free) stream

_ﬂcﬁ:_.ﬂq.'r
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Uniform stream: u =V v

d

¢ = Vx + fly) - v = g =f(y=10 —  fly) = constant

s=vit Cte
v=Ww & Cte

& = Vrsin @

Velocity potential function for a uniform stream:
Stream function for a uniform stream:

Uniform stream: ¢ = Vrcos @

& = Vixcos @ + vy sin a)
iy = V(ycos e — x sin @)

Uniform stream inclined at angle o {
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Line source or sink

Let the volume flow rate per unit depth, be the line source

strength, m
@:E"T”‘r =YL ) Me=?
L 27r o

My ©
The components of the velocity are
) ap 1ay VL 1 d¢h s
Line source: = —=——=— sg=——= —=10
ar rafl  2ur r af ar
e VIL

dr
o —u, =0 —= P =fll) — E=f’{ﬂ]=mf= Py
With solution

VIL
f(#) = — A + constant
2T

Line source at the origin:
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Line source or sink at an arbitrary point

Ay
F
_ r
VIL, d
8
\
S P . - =¥*__| ___
T Ny
!I z |
|
|
< i — X
VIL WIL : -
$p=—Irnp=—IhVix —ar-+ (y — by
29T 2ar
Line source at point (a, b): . .
_viL - VIL y— b

Y = — 48, = —arctan
' 29 : 291 xX—a
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Superposition of a source and sink of equal
strength

s L v
. VIL ¥ ¥ P
Line source at { —a, 0): ¢ = 8, where #; = arctan
Farr X +4a

Similarly for the sink,

—VIL y
2, where 0, = arclan —
2 - x—a

Line sink at {a, 0): s

VIL
Compasite stream function: v =o +iy = j—l;ﬂ, — 8,
£Tr

, ) . —V/L 2ay
Final result, Cartesian coordinates: W = arctan ——————
2 x4+ y-—at
—VIL 2ar sin @
Final result, cylindrical coordinates: i = . arctan ———-
&7 r-—=—da
Using
W
arctan(u) + arctan(v) = arctan 1T (mod m), wuv#l. 31
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Line vortex

The radial component of the velocity is zero and

. F | dur | 4 a T
¥ Line vortex: ur=—¢=——'=ﬂ uE=——¢=——¢=—
g ar r af r af ar 21rr
r where I' = 2mrug, is the circulation, around a loop of radius r.
fl
( :
) X
Then,
‘ P Line vortex at the origin: $=2b ¢=-Ins
ine vortex at the origin: b= b= nr
r "
& r,_r . Y-?
_______ 2N\ d = 2 b = o arctan —— e

Line vortex at point (a, b): r

T ; - -
i = _,;.__I“rl = —qln Vix —ay + (y — by

i 0 =
- a -l
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Superposition of a line sink and a line vortex
at the origin

The stream function is

7 / / M;—r’""
Superposition: = EH L Inr ] ( Ug’ / | 0.7
' T2 2w i | |
N .~ I ] |IIr !,..--"" l\
P ; (

Streamlines:
r

i — 08
om | 04 (( E
with streamlines ’ 04— (%\x
N 0.9
r= exp({wmﬂ — zmﬁ) -1 Dj"‘“ —
: K

|

[

|

i —
[

1 o VIL s r
_E = _

Velocity components: THES 0 2
r mr

Note that velocity diverges at the origin, which is a singularity (unphysical).
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Sources and sinks
(Faber 4.4)

* The 1/R potential ¢ = - %‘5 is a solution of Laplace’s equation in
3D

* |t describes isotropic flow with velocity Q/4aR’
* [f Q> 0itisasource and itis a sink otherwise. Q is the discharge rate.
* Free stream potential ¢ = Ux;.

» Superposition of the two gives

. 2 X2 ¥
scos 6, (45 + uz)’= = S sin 6,

) = U -+
4R 4R~



Sources and sinks

* Orin spherical coordinates,

p = U cos 6 + =, Uy = — Usin 6.

—
- O
A

(h)

Figure 4.2 Lines of flow past (a) a point source, (b) a point sink. The surface
of revolution X encloses all the ftuid coming from, or destined for, the source
or sink respectively.

35



Excess pressure and force

The excess pressure vanishes at infinity where the velocity is that of the free stream.
Then Bernoulli gives for the dynamical pressure:

2 5 pUQ cos 6 pO?
¢ = — p(U? — u3 — u3) = — — = -
e R~ o) 4R 327K
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Total force in the direction x, exerted by this excess of pressure on the fluid inside a
spherical control surface centered on O, of an arbitrary R.

T () cos @ sin 6 dHleUQ

(msz fsinf + .
SaRU 3

JI

37



Rate of change of momentum

* The total force is equal to the rate of change of momentum in the x

direction of the fluid, within the sphere:

-
Y

Z? _ J pu UR2TR? sin 6 d6

- S ——

4]

T/”n)\ aAd .. 2 2
J [U2C089+UQ(I+COb 9)+Q cos 6
{

= . _ 27R* sin 9 dO
Az R* 162°R? }

'4/]/
Reynolds transport theorem: “Pws _ d | SR
Y P ' ———J pde—i—J pbV .7 dA
Cv cs

dr  dt
. . & _
§F=—| oV dV + || pV(V-1T) dA

dt jév Jos

\

B:E,/"‘“
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Rate of change of momentum

p* e d
J

SR — 1eJd
J

o
___'___-____,—a——‘—_”r_ >
>

=

* There is then an additional force on the fluid in the x direction of
magnitude pUQ

* This has to be exerted by the source (sink) and thus the source (sink)
will experience a reaction force
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Two equal sources

Velocity at one source, due
to the other:

U= Qtn2dy. ([
U= @

hnt

~

On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

20 sin ¢

M, = 2 Nn? ‘_‘/9, —— = da(d sec 6)2- ’5 -a'
°.d
&

,)I‘ - JTXD

f Lr (d /w,e)z r—d/)ze
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¥ _
#,a - HF =) P
* Assuming that the excess pressure vanlshes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

Excess pressure and force »
-4
/ ' P

_ pQ7sin® 0 cos* 0
8’d?

prio} =

* The fluid to the left of the bissecting plane experiences a force due to
this excess pressure, given by

” 2 a2 )
Fu: - J m?ﬂd tan ¢ d(d tan 0) = fggﬁj sin” ¢ cos 0 df = :
0 0
Bd‘om
= pUQ.

AF :@PM:.O[A \/J

OL LerM)ﬁ ‘\
LS esley U s




Analytical solutions of Laplace’s equation

(S... 4. /)

(i) Two-dimensional circular polar coordinates (r, 8)

In this system Laplace’s equation becomes

[, 09 o _ETN 2
= T L0 ) ) 2%
YA Vv Ve yet

Single-valued solutions in which the variables are separated can readily be found.
They are:

¢ = constant,

¢ < ¢y = Inr, (4.22)
¢ = ¢, = r"cos (n0), or ¢ =y, =7r"sin (no) (4.23)

[n = £1, £2, +3 etc.].
G ( ‘ 60-’“1‘40/'5 ‘/g Cov\.‘/mn-no
el .

/ o
— (;‘b = constant + A{lfpll + E(Anan + an:'l)
f=)
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Ex.:

d . 0°
Pz e ) Al
e —— ——
¢ 4° °
.’/ ('V‘H .c >d W /\M-—L Z
. c Lo m o
pXs

= /"‘zé»ha At

Z"f'erﬁ«o,‘ }/é ..-—/\ M/uw(am)
J/,‘f. -+l°'7: - O
91"‘ = — 7" (o)
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(iv) Three-dimensional spherical polar coordinates (R, 0, ¢)

Laplace’s equation in spherical polars has separated solutions which form a
complete set, like the two-dimensional solutions described by (4.22) and (4.23).
We need not list them fully here, because we shall be concerned only with
problems in which the flow is axially symmetric, i.e. in which the flow potential
does not vary with the azimuthal angle ¢.” In these circumstances Laplace’s
equation simplifies to V4

. v
—> i(Rzi&ﬂ)-i— _1 i(sin9%)=ﬂ,
dR IR

and its separated solutions may be written as
¢ o« ¢, = R" P, {cos 0},
¢ > ¢, =RV P,{cos ).
[n =0, +1, +2, +3 etc.].

0= Z LAY ¢ 87 B:

Laplacian in spherical coordinates

., 18 zé‘f) 1 8 (. . of 1 7 2
20 2 Y28 = gL | = ally
vI= e ar(" or ) sm6 56 (Sm aa) 250 g xr s




The Legendre functions P,{cos 6} may be expanded as polynomials in their
argument, and we shall need the following expressions in particular:

Py{cos 0} = 1, (4.29)

P,{cos 8} = cos 0, (4.30)
1

P,{cos #} = 3 (3 cos™ 6 — 1). (4.31)

The full functions ¢,, and ¢,, are properly called zonal solid harmonics. They are
orthogonal to one another, and all other solutions of Laplace’s equation in three
dimensions which sharc their symmetry (or asymmetry) may be expressed as
linear combinations of them [cf. (4.24)].

Some of the solutions described by (4.27) and (4.28) arc of course trivial. Thu*-.

¢ = 1 for all values of R and 6. As for Csc. umfn,..,e
¢ =Reoso=x,  H=U2 745 O
and L&
| Foute o 3D
¢y = R 7t s 7=



Potential flow around a sphere

Faber 4.7
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Solutions of the Laplace equation

L
CEM = rr Pp«(é@©>
b7 = (D Pucmo)

@ )

O T

where

Pg:é:@@

General solution

¢ = C (AL F 4 A )

Boundary condition A J’ _ V
|> V> oo = ¢ = (/V‘(/o’?‘a {Aé -
g — ¢+ A, =0

-4



Z)\r:a_ oM O o )4 O

D/\ -

\_
2N (m) 708 He (o)
7 (=59

Since the solution for a given set of boundary conditions is unique, only n=1 is

needed. i
dDJ = /]; E =2 ©
Thus Z/u’q,f
/—\L,_\ _ _
(ﬁ—: v o + Al o - CD@(U/‘ ¢ D
pt e

D¢

PIA
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so that in contact with the sphere

L9 '
U1 =2 29)-
p ( 2 Sin

. 1
Pr=o — E

Because the excess pressure at R = a is completely symmetrical about the
equatorial plane, a sphere which is in uniform motion relative to fluid experiences
no force, apart from its own weight and the hydrostatic upthrust which we have

suppressed. This is an example of d’Alembert’s paradox [§7.8],
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Lift & drag forces

* The component of the resultant pressure and shear forces that acts
in the flow direction is called the drag force (or just drag), and the
component that acts normal to the flow direction is called the lift
force (or just lift).

F// - —JT)X@/A// = O drag

,6_ :_f//)%@/ﬁi:g lift
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Solid hemisphere on a flat plate

B U : P Wi =
) F H-= P4 Y 1) =6
U Due to high spegd floeﬁ

' at the top of the sphere,
we expect a low pressure

5 at the top of the sphere.
This pressure results in a
lift force on the
hemsiphere.

Potential

0 —o 22(229) L I, .4

oV Ir fea® P 36

Same solution and boundary conditions as for a sphere in the previous slides.



Potential flow around a sphere and Magnus
effect

TP
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Rotor ship: propulsion by Magnus effect

https://en.m.wikipedia.org/wiki/Rotor_ship

Wy
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https://en.m.wikipedia.org/wiki/Rotor_ship

D’Alembert’s paradox: In
irrotational flow , the
aerodynamic drag force
on any body of any shape
immersed

in a uniform stream is
zZero.

“It seems to me that the theory

(potential flow), developed in all
possible rigor, gives, at least in
several cases, a strictly vanishing
resistance, a singular paradox which |
leave to future Geometers [i.e.
mathematicians - the two terms were
used interchangeably at that time] to
elucidate”

Y '¥Y'Y¥VRVYR

Y'Y VY VN

Irrotational flow approximation

Aerodynamic drag = 0
(@)

Real (rotational) flow field

Aerodynamic drag # 0
(b)
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Drag force

Wind tunnel test section

Fﬂ P Hm

Moving belt Drag balance

In a real flow, the pressure on the back surface of the body is significantly
less than that on the front surface, leading to a nonzero pressure drag on
the body. In addition, the no-slip condition on the body surface leads to a
nonzero viscous drag as well.

Thus, the irrotational flow falls short in its prediction of aerodynamic drag
for two reasons: it predicts no pressure drag and it predicts no viscous

drag.
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Different regimes

Ty 1}

\__,O/—i anached vortices
(b) 10<Re<40

e
. P
A PoR —~
J~/\:\‘_z~"’}’:pf L -
L
-~

fully turbulent wake
(d) Re > 200,000

National Asronautics and Space Admi

mbrag of a Sphere @

Cd | —— Smooth
ig| N - == Rough
1.0
.5

10 103 10 10

www.youtube.com/watch?v=fcjaxC-e8oY

low

pressure
zone

ball direction > EPYE R,

Science of Golf: Why Golf Balls Have Dimples
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Doublet: line source and sink close to origin

We have seen before that =2 O o P
Compaosife stream function: U= _EWL arcta fjs‘";f/ 9. M?O .
By Taylor expanding the arctan around zero: ?—' | v
- Q= i
g —

J((MB _f(@~3+jr/a- <) +

! Q(V e T R
13 /m/

—a(VIL)r sin 0
o— L 4 A Stream function as a — (: b—> a(V/L)r sin
w(rr — a)
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Doublet: line source and sink close to origin

Let a tend to zero at constant doublet strength K, to find

—a(VIL) sin@ _ Ksin b
T r r

Doublet along the x-axis: fr =

Doublet along the x-axis:

Streamlines (solid) and ipotential
+ @ = U v C’) S reamlines (solid) and equipotentia

lines (dashed) for a doublet of strength K
located at the origin in the xy-plane

( 6 }L i UI/‘ ( ;Of/‘ﬂﬂ Q) and aligned with the x-axis.

P>
\_—/
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Superposition of a uniform stream and a doublet:
Flow over a circular cylinder

in
Superposition: =V _rsind — K S

"

For convenience we set iy = 0 when r = a

Doublet strength: K=Vada

2
Alternate form of stream function: / Y = V_sin H(r — —) ]

5 — g 1
b —smﬂ(r* ﬂ)

g = AV (g*) + 4sin? 0

Nondimensional streamlines: r¥ -
2sin @

—s B
1 dule a’ dilr . a’ , :
U = g = V., cos ﬂ'(l — ﬁ)j Uy = — == —V._ sin E(l + rz) — KHW_E

OU‘{‘V‘A /"“\c‘ﬁ”v‘): (p:’ C‘L‘ﬂ".-{’ ZAM¢M+ Bh. -ll'n-s :
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